
12. Hydraulic jumps and Bores 

 ― A tsunami wave travelling upstream along a 
river  

 

I. Classical Discussion on Hydraulic Jumps and Bores  

1. Hydraulic Jump  

After passing over a dam, the stream makes a “rolling tube” of water  

downstream. We call such features a “hydraulic jump.” 

 

 

In figure 1, section I is considered to be before the hydraulic jump, and 

section III after it. The status of section I is “supercritical flow” or “shoot,” 

and that of section III is “subcritical flow.” We assume that water depths at 

I and III are h1 and h3, and the average flow speeds are u1 and u3, respectively.  

 We assume that the location of the hydraulic jump does not change, and the 跳水の

位 flow is stationary. The law of conservation of mass must be satisfied, that is, the 

incoming flow amount at section I is equal that of outgoing flow at the section III, so,  

u1h1 = u3h3, 

We call this value the “flow amount,” q 

Fig. 1 Hydraulic Jump 
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We next consider the momentum of the water mass between the 

sections I and III. We compare the incoming momentum passing though 

section I, and the outgoing momentum passing through III; the former is 

larger than the latter. The difference of the momentums is derived from the 

principle that “the momentum change is equal to the product of force and 

duration time ( Ftmv  ).” 

 

 

Note: If we integrate F = m by time, then we have 
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We call the right side the “force product.” If the condition is stationary, the 

left side of this equation is simply written as Ft. In this case, we can write 

  (2)Ftmv   

 

 

In other words, the total pressure at section I is less than that at III; the 

water mass between I and III receives this pressure difference, which acts 

as the difference in momentum given by equation (2).  

The incoming momentum at section I over time t is given by 
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However, the outgoing momentum at section III is given by 
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The difference in momentum between I and III is given by 

  (5)3
2

31
2

1 thuhu   

Per unit width. This difference is equal to the force product. The total 

pressure at the section I is 
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in the same way that the total pressure at section III is 
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As h3> h1, so F3 > F1. This difference of the total force causes the force product in the 

duration time t. So, 
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Or 
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Here, the right side may be written as  

  






 


31

132
31

2 11
hh

hh
qh/h/q  

Thus, equation (9) is 
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If we consider h1, u1, and q as the known numbers, and h3 as an unknown number, we 

have the following equation of the second order, 
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The solution of this equation is 
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Thus, we have a value for h3, and can easily obtain the value of u3 using equation (1). 

 

2. Energy Change before and after a Hydraulic Jump 

Bernoulli’s equation for a stationary stream is given by 
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We can recognize that equation (12), when multiplied by water density  expresses 

energy contained in a unit volume. The first term corresponds to kinematic energy, 
2 21 mv /  , and the second term mgh is the potential energy. It should be noted that 

the energy contained in a unit volume near the surface, at middle depth, or near the 

bottom are the same, because the p-value will compensate for the decrease of the 

second term value. 

At a point on the water surface in section I, the energy per unit volume is given by 
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Thus, the energy passing section I per unit time is expressed as, 
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In the same way, the energy per unit volume at section III is  
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Thus, the total energy going out through section III per unit time is given by 
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We take the difference, and then, we have 
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This equation can be re-written by using equation (10) 
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Equation (13) turns into 
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As h3 > h1 the value of this will be a positive number for any case. That is, in every 

case, some part of the total energy will be missing. The ratio of the depths before and 

after the hydraulic jump is expressed as s = h3/h1, and then, this equation becomes 
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If s is close to 1, this value is very small (weak jump), while if s is far from 1 (strong 

jump), the energy dissipation becomes larger. 

 

3. Subcritical flow and Supercritical flow 

If we have the flow amount (q) and the flow velocity (u), we may calculate the 

energy in a unit volume (E). The depth h is related to the flow amount and velocity as 

u = q/h 

The energy per unit volume is 
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By using equation (14), we eliminate u and have 

(16)
2

1
2

2

gh
h

q
E   

This value has a minimum of (we apply ; /3)( 3 abc c b a  ) 
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We find that 

q2 / h2= gh 

In the case when 
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The right side gives the long wave speed. This means that in the case when flow is 

equal to the long wave speed, the energy is minimized.  

In the case that the flow speed is slower than the speed of a long wave, water 

surface disturbances can go upstream, and a disturbance of the water surface 

appears then is rapidly recovered, and it is possible to keep the water surface flat like 

a mirror. We call such flow as “sub-critical flow.” 

In contrast, in the case that the flow speed exceeds the long wave speed, 

disturbances appear on the water surface and cannot go upstream, and so they 

cannot be flattened, and the water surface disturbance cannot be recovered. We call 

such flow as “supercritical flow” or “shoot.”  

 

Fig. 2  
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The ratio of the flow speed to the long wave speed is known as the Frued Number 

(Fr). 
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In the case where the Fr number does not exceed 1, subcritical flow occurs, and in 



contrast, supercritical flow occurs when the flow speed exceeds the long wave speed. 

 

4. Bore 

In the case when a tsunami wave comes into a river, the water surface takes a 

step-shaped-form called a “bore.” 

Essentially, a bore is a moving hydraulic jump. 

 

Fig. 3. Bore 

 

This phenomenon may be observed in a driving car that has the same speed as the 

bore speed; the bore does not appear to be moving, and the observation matter is the 

same as a hydraulic jump. Flow speeds at the sections I and III are u1+ c and u3 + c, 

respectively. 

For the case of the hydraulic jump problem, u1and h1 are known numbers, and u3 and 

h3 are unknown numbers. In the case of a bore, u1, h1, and h3 are the known numbers, 

and u3 and the bore speed c are unknowns. The equation (10) for the jump problem is 

also satisfied for the bore problem and so  
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is satisfied also for the bore problem. Total flow amount q is “appeared flow by a 

driving observer,” and thus, 

 q = (u1+ c) h1 = (u3+ c) h3       (21)  

Together with (23) and (24), we can obtain the following:  
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and 
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